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Abstract
It is shown that during non-stationary heat flow in a metal the condition
of charge neutrality inside the metal is violated by transient space charges
which accompany the temperature relaxation. As expected for an effect of
thermoelectricity, the magnitude of the space charges is small. It depends
on a new parameter Q′ which is related to, but different from the absolute
thermopower. Both the case of an infinite system and that of a parallel plate
with free boundaries are treated.

1. Introduction

It is not always appreciated that the condition of charge neutrality in metals only holds under
certain conditions regarding the distribution of temperature inside a metallic body. These
conditions are either a homogeneous temperature or a stationary inhomogeneous temperature
distribution with heat flow. Under conditions of non-stationary heat flow, however, transient
electrical space charges appear and charge neutrality is violated. This result lies at the heart
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Figure 1. A thermoelectric circuit consisting of two metallic wires A and B. Wire B is interrupted
by a voltmeter. In the stationary case, the points of contact of A and B are held at the different
temperatures T1 and T2. The contacts to the voltmeter are assumed to be at the ambient temperature
T0. (Note that the position of the voltmeter is different from that in figure 13.1 of reference [3].)
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of thermoelectricity as can be seen by considering a thermoelectric circuit (figure 1): for
stationary temperature gradients in the metallic wires A and B, the electrochemical potential
measured by the voltmeter (which interrupts one of the wires) is purely electric and arises
from electric charges located at the metal interfaces and surfaces of the circuit [1, 2]. When
the external heat links are removed and the temperature gradients are allowed to relax via
non-stationary heat flow, however, these charges turn into transient electric space charges.

It is the purpose of this paper to give a systematic derivation of these results on the basis of
the established semiclassical theory of electron transport in metals [3]. The paper is organized
as follows. In section 2 the semiclassical theory of electron transport with standard definitions
is briefly reviewed. In section 3 the problem is treated for an infinite homogeneous metallic
medium. Section 4 deals with the simplest case of a metallic system with boundaries, the
infinitely extended parallel plate of finite thickness. In section 5 a short summary is given.

2. Constitutive equations

From a Boltzmann equation for the conduction electrons, the expressions for particle and heat
current density �j and �q are derived as [3]

�j = −l11(e �E + �∇µ)− (l12/T0) �∇T (2.1)

�q = −l21(e �E + �∇µ)− (l22/T0) �∇T (2.2)

where lij (i, j = 1, 2) are the elements of a symmetric 2 × 2 matrix of transport coefficients.
�E stands for the electric field, µ for the non-electric part of the chemical potential, T0 for the
global equilibrium temperature and (−e) for the electronic charge. l11 is related to the static
electrical conductivity σ by

l11e
2 = σ. (2.3)

The expressions are valid under the usual conditions for a hydrodynamic description, which
require that spatial and temporal variations are slow compared with the mean free path and
mean relaxation time of the conduction electrons. Under the condition of zero particle current

�j = 0 (2.4)

one obtains Fourier’s law for the heat current density:

�q = −λ �∇T (2.5)

with the thermal conductivity λ given by

λ = (l22 − l212/l11)/T0 (2.6)

and the expression for the thermoelectric field

�E + �∇µ/e = Q �∇T (2.7)

with the absolute thermopower (or Seebeck coefficient) Q given by

Q = −l12/(l11T0e). (2.8)

The second term on the r.h.s. of the expression for λ is due to the contribution of the thermo-
electric field (2.7) to the heat current (2.2). For time-dependent processes, the linear hydro-
dynamic equations of motion for the conduction electrons are the continuity equations for
particle and heat current given by

∂tn + �∇ · �j = 0 (2.9)

T0 ∂t s + �∇ · �q = 0. (2.10)
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s is the electronic entropy density. Entropy production, i.e. by Joule heat, is neglected in our
linear theory, since it depends quadratically on the deviations from equilibrium. Equations (2.9)
and (2.10) are supplemented by Gauss’s law

�∇ · �E = −e δn/ε0 (2.11)

where δn denotes the deviation of the electronic number densityn from the constant equilibrium
density n0.

3. The initial-value problem for an infinite medium (‘bulk’)

Expanding µ and s as functions of n and T , we obtain from (2.9), (2.10), (2.11) the following
coupled partial DEs for1 δn(�r, t) and δT (�r, t):

∂tn = −ωσ (1 − ξ 2�) δn− ωσ
ε0

e
Q′�T (3.1)

T0s|n ∂tn + T0s|T ∂tT = −(l12e
2/ε0)(1 − ξ 2�) δn + λ′�T. (3.2)

Here the following abbreviations are used: µ|n , µ|T , s|n , s|T are the partial derivatives of µ and
s with respect to n and T . Also,

ωσ = σ/ε0. (3.3)

ωσ for metals is a high frequency of the order of 1016 s−1. ξ is the electronic screening length
defined by

ξ 2 = (ε0/e
2)µ|n . (3.4)

For metals, ξ is of the order of the interatomic distance a0. The appearance of a microscopic
time (1/ωσ ) and length (ξ) for macroscopically prepared initial conditions (see below and
section 4) is a characteristic feature of problems involving charge transport. The remaining
abbreviations are

Q′ = Q− µ|T /e (3.5)

λ′ = l12µ|T + l22/T0. (3.6)

As we shall see below, the quantity Q′ has a direct physical meaning.
For given initial conditions δn(�r, t = 0), δT (�r, t = 0) the DEs (3.1) and (3.2) can be

solved by Fourier–Laplace transformation. We determine the initial conditions for a situation
in which particle currents are absent and stationary heat currents flow from heat sources to
sinks described by a heat source density h(�r). Because condition (2.4) is valid for the initial
condition, we can use (2.5) and (2.7) to calculate the Fourier transforms ñ(�k, t = 0) and
T̃ (�k, t = 0) of the initial values. From (2.7) together with Gauss’s law (2.11) we find

ñ(�k, t = 0) = (ε0/e)Q
′k2

1 + ξ 2k2
T̃ (�k, t = 0). (3.7)

With

�∇ · �q(�r, t = 0) = h(�r) (3.8)

using Fourier’s law (2.5) we obtain

T̃ (�k, t = 0) = h̃(�k)
λk2

(3.9)

1 Note that in all derivatives the deviations δn and δT from equilibrium may be replaced by the full values n and T .
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which yields

ñ(�k, t = 0) = (ε0/e)Q
′

λ(1 + ξ 2k2)
h̃(�k). (3.10)

For a description on macroscopic length scales we can drop ξ 2k2 in comparison to unity. In
a macroscopic description, therefore, the initial distribution of space charge is proportional to
the heat source density:

−e δn(�r, t = 0) = −(ε0Q
′/λ)h(�r). (3.11)

The Fourier–Laplace transforms of equations (3.1), (3.2) read

(s + ωσ (1 + ξ 2k2))n̂(�k, s)− ωσ
ε0

e
Q′k2T̂ (�k, s) = ñ(�k, t = 0) (3.12)

sT0
(
s|n n̂(�k, s) + s|T T̂ (�k, s)

)
+ (l12e

2/ε0)(1 + ξ 2k2)n̂(�k, s) + λ′k2T̂ (�k, s)
= T0(s|n ñ(�k, t = 0) + s|T T̃ (�k, t = 0)). (3.13)

If we solve these algebraic equations for the Fourier–Laplace transforms n̂(�k, s) and T̂ (�k, s)
of δn(�r, t) and δT (�r, t), we obtain expressions with two poles in the complex s-plane. For
wavevectors �k occurring in a macroscopic description, i.e. for

ka0 
 1 (3.14)

where a0 is the mean interatomic distance, these poles correspond to very different timescales.
One corresponds to a very high relaxation frequency of the order ofωσ , which sets the timescale
on which charge neutrality is established under isothermal conditions. In the k-range occurring
in a macroscopic description, the other pole corresponds to a much lower relaxation frequency
which depends on wavevector and is related to the heat conduction equation, as shown below.
For a macroscopic description we are interested only in the behaviour of the solution on this
longer timescale.

We have to restrict ourselves to such a macroscopic description, because the constitutive
equations (2.1), (2.2) for the current densities �j and �q are not strictly valid for components of
wavevectors of order a−1

0 and/or of frequencies of order ωσ [4]. At such large wavevectors
and high frequencies the transport coefficients lij themselves would depend on wavevector and
frequency. Without an explicit model for this extra dependence, working out the solution on a
short length scale corresponding to a0 and a short timescale corresponding to ω−1

σ would be of
limited value. It is worth emphasizing, however, that we can determine the correct solution for
small k and s, corresponding to long wavelengths and times, without knowledge of the form
of the transport coefficients at large wavevectors and high frequencies.

We therefore proceed with the approximation of dropping terms s/ωσ in comparison to
unity everywhere in (3.12) and (3.13). In addition, we drop ξk in comparison to unity because
of (3.14). This leads to

T̂ (�k, s) = (1 + [α + β]k2)T̃ (�k, t = 0)

s(1 + αk2) + [λ/(T0s|T )]k2
(3.15)

where

α = (ε0s|n/(es|T ))Q
′ (3.16)

β = ε0QQ
′/s|T . (3.17)

|α| and |β| both have the dimension of length squared. With an order-of-magnitude estimate
for the degenerate electron gas in a metal

s ∼ nkBT /TF (3.18)

Q,Q′ ∼ s/(ne) (3.19)
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where TF is the Fermi temperature and kB is Boltzmann’s constant, we find with n = a−3
0

|α|, |β| ∼ a2
0

kBT

e2/(ε0a0)

T

TF

 a2

0 . (3.20)

Consequently, in a macroscopic description the correction terms αk2 and βk2 may be safely
neglected, and we arrive at the result

T̂ (�k, s) = T̃ (�k, t = 0)

s + [λ/(T0s|T )]k2
(3.21)

which corresponds exactly to the heat conduction equation

∂tT − a ∇T = 0 (3.22)

with thermal diffusivity a = λ/(T0s|T ), both with regard to the position and the residue of
the pole. In other words: on the timescale of heat conduction on macroscopic length scales,
the correct result for the solution δT (�r, t) can be obtained from the heat conduction equation
using the full initial value δT (�r, t = 0).

The electric space charge (−e) δn(r, t) accompanying heat conduction follows immed-
iately from equation (3.1) if ∂tn is neglected in comparison to ωσ δn. On a macroscopic length
scale we thus obtain the relation

−e δn(�r, t) = +ε0Q
′�T (�r, t). (3.23)

This is a remarkable result: during temperature relaxation by heat conduction inside a metal,
the condition of local charge neutrality is violated. The quantity Q′ has a direct physical
meaning since it determines the magnitude of the space charges.

It is worth pointing out that the validity of the heat conduction equation (3.22) is intimately
connected with the existence of the space charges given by equation (3.23), although these
are small. Using the equations of section 2 it is easy to show that under conditions of zero
particle current (equation (2.4)) the heat conduction equation does not hold, despite the fact
that Fourier’s law (2.5) can be derived from this condition.

4. The parallel plate

It is of interest to study the same problem for a system with boundaries, at which electric
charges are localized initially. We first derive the exact solution as it follows mathematically
from the constitutive equations presented in section 2. For the reasons mentioned already in
section 3 (following equations (3.12), (3.13)), only the small-wavevector and low-frequency
components of this mathematical solution, which are relevant for a macroscopic description,
are physically correct. Therefore, we are finally interested only in the macroscopic form of
the solution. Since the solution to the mathematical problem is obtained as a Fourier series,
the macroscopic form of the solution corresponds to a truncated Fourier series, where the
components of short wavelength are suppressed.

The simplest case of such a system is the parallel metallic plate of thickness l and infinite
horizontal extent. We assume that all variables depend only on the coordinate in the direction
normal to the plate (z), which renders the problem one-dimensional. The equations of motion
(2.9), (2.10) for this one-dimensional problem read

∂tn(z, t) + ∂zjz(z, t) = 0 (4.1)

T0 ∂t s(z, t) + ∂zqz(z, t) = 0 (4.2)

complemented by Gauss’s law

∂zEz(z, t) = −e δn(z, t)/ε0. (4.3)
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The boundary conditions are

jz(0, t) = jz(l, t) = qz(0, t) = qz(l, t) = 0 (4.4)

and

Ez(0, t) = Ez(l, t) = 0. (4.5)

The boundary conditions for Ez are due to the assumed overall charge neutrality of the plate,
which gives zero electric field outside the plate.

The initial conditions for an initial situation of stationary heat flow across the electrically
insulated plate are

jz(z, t = 0) = 0 ∂zqz(z, t = 0) = 0. (4.6)

From the first of these we derive, using expression (2.1) and Gauss’s law (2.11), the equation

Ez(z, t = 0)− ξ 2 ∂2
z Ez(z, t = 0) = Q′ ∂zT (z, t = 0). (4.7)

Since jz(z, t = 0) = 0 implies ∂zjz(z, t = 0) = 0, taking this in combination with the second
of the boundary conditions (4.6) we obtain the equations

∂2
z T (z, t = 0) = 0 (4.8)

δn(z, t = 0)− ξ 2 ∂2
z n(z, t = 0) = 0. (4.9)

ξ 2 andQ′ are given by (3.4) and (3.5). The solutions of these equations together with Gauss’s
law (4.3) and the boundary conditions (4.5) for Ez are

δT (z, t = 0) = T ′ · (z− l/2) T ′ = constant (4.10)

δn(z, t = 0) = ε0

eξ
Q′T ′ sinh[(z− l/2)/ξ ]

cosh[l/(2ξ)]
(4.11)

Ez(z, t = 0) = Q′T ′
(

1 − cosh[(z− l/2)/ξ ]

cosh[l/(2ξ)]

)
. (4.12)

For illustration, the z-dependence of the initial charge density (−e) δn and of the initial electric
field Ez are plotted on a microscopic scale in figure 2. Because of the atomic scale of ξ and
the limitation of the validity of the constitutive equations (2.1) and (2.2) mentioned above, this

ξ l-ξ

(-e)⋅δn(z,t=0)

(ε0/ξ)⋅Ez(z,t=0)

z0 l

Figure 2. A plot of the initial conditions equations (4.11), (4.12) on a microscopic length scale for
a plate of thickness l. For the two curves the same units are used. (Q′T ′ < 0.)
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result is only qualitatively, not quantitatively, correct. For a plate of macroscopic thickness l
the initial charge density is practically zero inside the plate, and the initial electrical field is
practically constant, except for surface layers with a width of the order of ξ , which is of the
order of the interatomic distance. On macroscopic length scales the initial charge density is
a surface charge, and the initial electric field inside the plate is constant with a discontinuous
drop to zero at the surfaces. As in the bulk (section 3), the initial charge density is located at
the sources and sinks of the stationary initial heat flow, which are located at the surfaces.

It is convenient to solve the equations of motion (4.1), (4.2) for variables which obey
homogeneous boundary conditions like equations (4.5) for Ez. A second variable obeying the
same boundary conditions is found as

τ(z, t) =
∫ z

0
dz′ δT (z′, t). (4.13)

The boundary condition

τ(0, t) = 0 (4.14a)

follows from this definition. The second boundary condition

τ(l, t) = 0 (4.14b)

is proved below. The equations of motion for Ez(z, t) and τ(z, t) are obtained by integrating
(4.1), (4.2) and (4.3) from z′ = 0 to z′ = z using the boundary conditions (4.4) and (4.5). This
results in

−ε0

e
∂tEz(z, t) + jz(z, t) = 0 (4.15)

−ε0

e
T0s|n ∂tEz(z, t) + T0s|T ∂t τ (z, t) + qz(z, t) = 0. (4.16)

Setting z = l in the second equation yields

∂tτ (l, t) = 0. (4.17)

Since τ(l, t = 0) is zero because of (4.10), the second boundary condition (4.14b) for τ is
proven. With the explicit expressions (2.1), (2.2) for particle and heat current jz and qz inserted
into the equations of motion (4.15), (4.16), these become

(∂t + ωσ (1 − ξ 2 ∂2
z ))Ez(z, t)− ωσQ

′ ∂2
z τ (z, t) = 0 (4.18)

((ε0/e)T0s|n ∂t + el12(1 − ξ 2 ∂2
z ))Ez(z, t)− (T0s|T ∂t − λ′ ∂2

z )τ (z, t) = 0. (4.19)

To solve this pair of partial DEs with homogeneous boundary conditions (4.5), (4.14a), (4.14b),
we can apply Fourier’s method, as is familiar from the problem of the vibrating string with
fixed ends. Writing

Ez(z, t) =
∞∑
n=1

Ez(kn, t) sin(knz) (4.20a)

τ(z, t) =
∞∑
n=1

τ(kn, t) sin(knz) (4.20b)

with kn = nπ/l, n = 1, 2, 3, . . ., we obtain the ordinary DEs for the time-dependent Fourier
coefficients Ez(kn, t) and τ(kn, t) as(

d

dt
+ ωσ (1 + ξ 2k2

n)

)
Ez(kn, t) + ωσQ

′k2
nτ (kn, t) = 0 (4.21)

(
(ε0/e)T0s|n

d

dt
+ el12(1 + ξ 2k2

n)

)
Ez(kn, t)−

(
T0s|T

d

dt
+ λ′k2

n

)
τ(kn, t) = 0. (4.22)
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Because of the symmetry of the initial conditions, only odd values of n occur. The initial-
value problem for this pair of ordinary DEs can be solved by Laplace transformation. Arguing
as in the bulk case, we proceed with the same approximation of dropping s/ωσ and ξ 2k2 in
comparison to unity. Using the relation for the initial conditions

Ez(kn, t = 0) ≈ −Q′k2
nτ (kn, 0) (4.23)

which follows from (4.7), we find for the Laplace transform

τ̂ (kn, s) =
∫ ∞

0
dt e−st τ (kn, t) (4.24)

0 l/2 l

δT

z

t=0

t>0

0 l/2 l

Ez

z

t=0

t>0

0 l/2 l

ρ

z

t=0

t=0

t>0

Figure 3. The temperature variation δT , electric field Ez and electric charge density ρ = (−e) δn
across an insulated parallel plate of thickness l with constant initial temperature gradient T ′ on a
macroscopic scale. The times are t = 0 and a later time t where a(π/l)2t = 1 holds. Q′ < 0. a is
the thermal diffusivity. In the diagram for ρ the arrows at z = 0 and z = l mark the initial surface
charges (see also the text).
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the result

τ̂ (kn, s) =
(
1 + [α + β]k2

n

)
τ(kn, t = 0)

s(1 + αk2
n) + [λ/(T0s|T )]k2

n

(4.25)

with α and β given by (3.16), (3.17), which is analogous to (3.15). As argued in section 3, on a
macroscopic length scale the correction termsαk2

n andβk2
n can be neglected, so τ(z, t) and its z-

derivative δT (z, t) obey the heat conduction equation (3.22). The electric field accompanying
the time-dependent heat conduction is obtained from (4.18) in the same approximation as

Ez(z, t) = Q′ ∂zT (z, t) (4.26)

which is analogous to the result (3.23). For a temperature gradient of 100 K cm−1 and
|Q′| = 10 µV K−1 this yields a weak electric field of only 1 mV cm−1.

A qualitative illustration of the results for δT , Ez and the charge density ρ = −e δn is
shown in figure 3 on a macroscopic scale. At t = 0 the temperature gradient and electric field
are constant across the plate. The initial charge density is given by two delta peaks located at
the plate surfaces at z = 0 and z = l. The time t > 0 is chosen as (a(π/l)2)−1, where a is the
thermal diffusivity. At this time, only the components with the smallest wavevector k1 = π/l

are still appreciable. All components with larger wavevectors (kn with n � 3) have already
decayed. A distribution of space charge inside the plate has formed from what remains of the
initial surface charges.

5. Summary

We have shown that the condition of charge neutrality inside a metal is transiently violated
during non-stationary heat flow. The magnitude of the space charges, given by equation (3.23),
is small, but their existence is necessary for the macroscopic heat conduction equation (3.22)
to hold. A result of more mathematical interest is the applicability of Fourier’s method to
the plate problem with boundary conditions, for which the electric field and the integrated
temperature (4.13) are conveniently chosen as dynamic variables.
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